

TONBRIDGE SCHOOL

Paper for Entrance into Year 12

Sample Paper Maths

Name:	 	 	 	 	 	•	 	 	 •	 	 •	•		•	 •	•	
School:	 	 	 	 			 	 		 	 						

Answer **ALL** questions.

Do all your workings in the spaces provided.

Total marks: 60

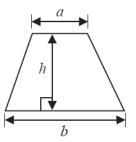
Time: 60 minutes.

You are allowed to use a calculator in this exam.

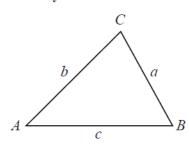
A list of useful formulae will be found on page 2.

Formulae sheet - Higher Tier

Arithmetic series


Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

The quadratic equation

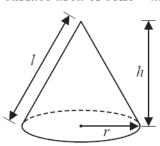

The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$ are given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Area of trapezium = $\frac{1}{2}(a+b)h$

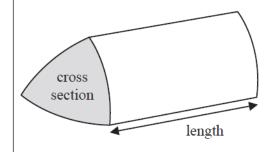
Trigonometry

In any triangle ABC

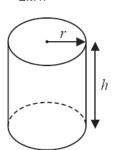

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule $a^2 = b^2 + c^2 - 2bc\cos A$

Area of triangle =
$$\frac{1}{2}ab\sin C$$

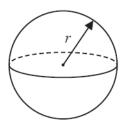

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl



Volume of prism

= area of cross section × length



Volume of cylinder = $\pi r^2 h$ Curved surface area of cylinder = $2\pi rh$

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

SECTION A (60 marks)

Q1)

Expand and simplify:

$$(2x+1)^2 - (x+1)(x-2)$$

____[3]

Q2)

Write as a single fraction in its simplest form:

$$\frac{4}{3x} + \frac{5}{2x}$$

____[2]

Q3)

Solve:

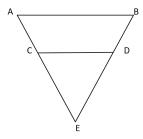
$$\frac{3}{x+7} = \frac{5}{x-1}$$

____[3]

Q4) Factorise fully:

a)
$$2x - 4x^2$$

b)
$$3x^2 - x - 2$$


c)
$$50p^4 - 18q^2$$

Q5)

In the diagram below, AB and CD are parallel. The ratio of the area of ABCD to the area of CDE is 9:16.

The length of ED is 6 cm. Calculate the length of DB.

Note the diagram is not to scale.

Find the equation of the line perpendicular to 2y + 3x = 5 that passes through (6,1). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

Q7) a) Write the expression below in the form \sqrt{k} . You must show full working.

$$\frac{27}{\sqrt{3}} - \sqrt{75}$$

[4]

b) Solve $x^2 + 2x \ge 3$

\sim	o	١
u	0	1

A die is biased so that the probability of getting a six is 1/5. I roll the die three times. Calculate the probability I get at least two sixes.

____[4]

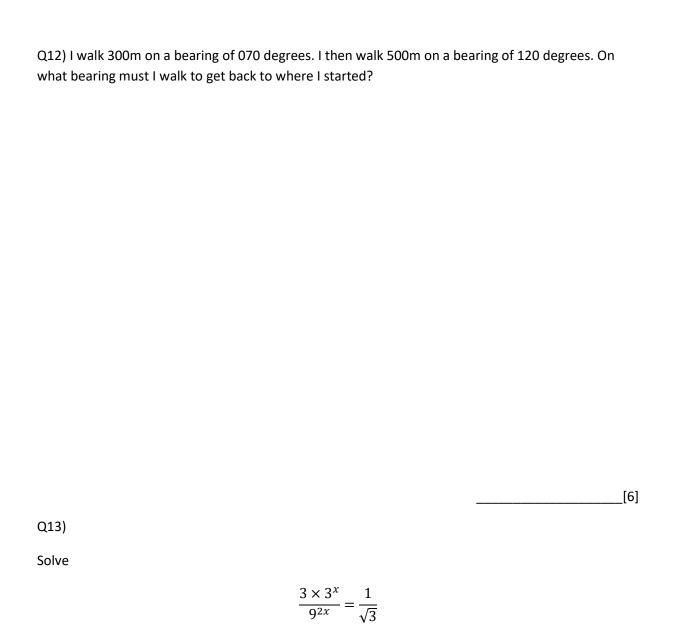
Q9)

Find the coordinates of the points of intersection of y + 2x = 5 and $x^2 - 3y^2 = 6$.

You must show full algebraic working!

Q10)

Find the coordinates of the point(s) on the curve $y = \frac{6}{x}$ where the gradient is $-\frac{3}{4}$.


_____[4]

Q11)

The values of P and Q are given below correct to one decimal place. The value of R is correct to one significant figure. Find the greatest possible value of S. Give your answer to three decimal places.

$$P = 1.5, Q = 2.7, R = 20$$

$$S = \frac{2P}{R - Q}$$

Q14)
The seventh term of an arithmetic sequence is 43. The 13 th term of the sequences is 25.
Find the greatest possible value of S_N

____[4]